Baculovirus inhibitor of apoptosis functions at or upstream of the apoptotic suppressor P35 to prevent programmed cell death.
نویسندگان
چکیده
Members of the inhibitor of apoptosis (iap) gene family prevent programmed cell death induced by multiple signals in diverse organisms, suggesting that they act at a conserved step in the apoptotic pathway. To investigate the molecular mechanism of iap function, we expressed epitope-tagged Op-iap, the prototype viral iap from Orgyia pseudotsugata nuclear polyhedrosis virus, by using novel baculovirus recombinants and stably transfected insect cell lines. Epitope-tagged Op-iap blocked both virus- and UV radiation-induced apoptosis. With or without apoptotic stimuli, Op-IAP protein (31 kDa) cofractionated with cellular membranes and the cytosol, suggesting a cytoplasmic site of action. To identify the step(s) at which Op-iap blocks apoptosis, we monitored the effect of Op-iap expression on in vivo activation of the insect CED-3/ICE death proteases (caspases). Op-iap prevented in vivo caspase-mediated cleavage of the baculovirus substrate inhibitor P35 and blocked caspase activity upon viral infection or UV irradiation. However, unlike the stoichiometric inhibitor P35, Op-IAP failed to affect activated caspase as determined by in vitro protease assays. These findings provide the first biochemical evidence that Op-iap blocks activation of the host caspase or inhibits its activity by a mechanism distinct from P35. Moreover, as suggested by the capacity of Op-iap to block apoptosis induced by diverse signals, including virus infection and UV radiation, iap functions at a central point at or upstream from steps involving the death proteases.
منابع مشابه
Baculovirus caspase inhibitors P49 and P35 block virus-induced apoptosis downstream of effector caspase DrICE activation in Drosophila melanogaster cells.
Baculoviruses induce widespread apoptosis in invertebrates. To better understand the pathways by which these DNA viruses trigger apoptosis, we have used a combination of RNA silencing and overexpression of viral and host apoptotic regulators to identify cell death components in the model system of Drosophila melanogaster. Here we report that the principal effector caspase DrICE is required for ...
متن کاملBaculovirus apoptotic suppressor P49 is a substrate inhibitor of initiator caspases resistant to P35 in vivo.
Caspases play a critical role in the execution of metazoan apoptosis and are thus attractive therapeutic targets for apoptosis-associated diseases. Here we report that baculovirus P49, a homolog of pancaspase inhibitor P35, prevents apoptosis in invertebrates by inhibiting an initiator caspase that is P35 insensitive. Consequently P49 blocked proteolytic activation of effector caspases at a uni...
متن کاملExpression of baculovirus P35 prevents cell death in Drosophila.
The baculovirus P35 protein functions to prevent apoptotic death of infected cells. We have expressed P35 in the developing embryo and eye of the fly Drosophila melanogaster. P35 eliminates most, if not all, normally occurring cell death in these tissues, as well as X-irradiation-induced death. Excess pupal eye cells that are normally eliminated by apoptosis develop into pigment cells when thei...
متن کاملCrystal structure of baculovirus P35: role of a novel reactive site loop in apoptotic caspase inhibition.
The aspartate-specific caspases are critical protease effectors of programmed cell death and consequently represent important targets for apoptotic intervention. Baculovirus P35 is a potent substrate inhibitor of metazoan caspases, a property that accounts for its unique effectiveness in preventing apoptosis in phylogenetically diverse organisms. Here we report the 2.2 A resolution crystal stru...
متن کاملExpression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease.
The sphinganine analog mycotoxin, AAL-toxin, induces a death process in plant and animal cells that shows apoptotic morphology. In nature, the AAL-toxin is the primary determinant of the Alternaria stem canker disease of tomato, thus linking apoptosis to this disease caused by Alternaria alternata f. sp. lycopersici. The product of the baculovirus p35 gene is a specific inhibitor of a class of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 71 6 شماره
صفحات -
تاریخ انتشار 1997